# Setting the Level of Detail

To set the level of equation-solving detail to show, tap the "Detail" button and choose a setting, or use the "detail" command.

The "detail" command controls the amount of annotation the program will generate as it symbolically solves equations.

 Setting Description low Show only the beginning and solved forms of the equation, much like a "before and after" display. medium Adds the display of intermediate steps of the equation-solving process.  Medium detail is the default. high Adds a descriptive comment before the intermediate steps.  The comment explains the operation to be performed and the operand involved. verbose Adds the display of intermediate simplification steps which are often taken for granted. explicit Adds a descriptive comment to explain each simplification step.

The Detail Command

When solving an equation, the program typically shows step-by-step how it manipulated the equation to isolate the variable.  In some circumstances, it may be preferable to show more (or less) detail during the equation-solving process.  The "detail" command may be used to set the level of detail to one of five settings: low, medium, high, verbose, and explicit.  Greater levels of detail provide additional annotation to the output.

The following examples show the same equation being solved with increasing levels of detail.

Low

The keyword "low" causes only the beginning and solved forms of the equation to be shown, much like a "before" and "after" display.

`> detail low * Detail set to low.> (1-1/(2x))x=5   Solving for x:    /     1 \          ( 1 - --- ) x = 5    \    2 x/                              1               x = 5 + -                       2       x = 5.5 (or 11 / 2, or 5 & 1 / 2)`

Medium

The keyword "medium" adds the display of major intermediate steps of the equation-solving process.  Medium detail is the default.

`> detail medium * Detail set to medium.> (1-1/(2x))x=5   Solving for x:    /     1 \          ( 1 - --- ) x = 5    \    2 x/                      1               x - - = 5               2                           1               x = 5 + -                       2       x = 5.5 (or 11 / 2, or 5 & 1 / 2)`

High

The keyword "high" adds a descriptive comment before each intermediate step.  The comment explains the operation about to be performed and the operand involved.

`> detail high * Detail set to high.> (1-1/(2x))x=5   Solving for x:    /     1 \          ( 1 - --- ) x = 5    \    2 x/        * Expanding (1-1/(2x))x...               1               x - - = 5               2     * Adding 1/2 to both sides...                       1               x = 5 + -                       2       x = 5.5 (or 11 / 2, or 5 & 1 / 2)`

Verbose

The keyword "verbose" adds the display of intermediate simplification steps normally taken for granted.

`> detail verbose * Detail set to verbose.> (1-1/(2x))x=5 * Simplifying...    /     1 \          ( 1 - --- ) x = 5    \    2 x/          Solving for x:    /     1 \          ( 1 - --- ) x = 5    \    2 x/        * Expanding (1-1/(2x))x...            1            1 x - --- x = 5           2 x                  1              x - --- x = 5           2 x                   1 x             x - --- = 5             2 x                  x              x - --- = 5             2 x                   1               x - - = 5               2     * Adding 1/2 to both sides...           1   1       1       x - - + - = 5 + -           2   2       2                       1               x = 5 + -                       2       x = 5.5 (or 11 / 2, or 5 & 1 / 2)`

Explicit

The keyword "explicit" adds a descriptive comment to explain each simplification step.

`> detail explicit * Detail set to explicit.> (1-1/(2x))x=5 * Simplifying...    /     1 \          ( 1 - --- ) x = 5    \    2 x/          Solving for x:    /     1 \          ( 1 - --- ) x = 5    \    2 x/        * Expanding (1-1/(2x))x...            1            1 x - --- x = 5           2 x       * Simplifying a multiplicative identity...            1              x - --- x = 5           2 x       * Collecting factors over a denominator...             1 x             x - --- = 5             2 x     * Simplifying a multiplicative identity...              x              x - --- = 5             2 x     * Cancelling-out x between x and 2x...               1               x - - = 5               2     * Adding 1/2 to both sides...           1   1       1       x - - + - = 5 + -           2   2       2 * Cancelling additive inverses of 1/2...                       1               x = 5 + -                       2       x = 5.5 (or 11 / 2, or 5 & 1 / 2)`